
Point Cloud Processing and Analysis
with PDAL

08/26/2019

Howard Butler
Pete Gadomski

Dr. Craig Glennie
Michael Smith
Dr. Adam Steer

August 26th, 2019

CONTENTS

I Introduction 3

1 Materials 7
1.1 Slides . 7
1.2 Workshop Materials . 7
1.3 USB Example Data Drive . 7

II Introduction to LiDAR 9

2 Types of LiDAR 13

3 Modes of LiDAR Collection 15

4 Georeferencing 17
4.1 Integrating LiDAR and GNSS/IMU data . 17

5 Discrete-Return vs. Full-Waveform 19

III Software Installation 23

6 Conda 25
6.1 What is Conda . 25
6.2 How will we use Conda? . 25
6.3 Installing Conda . 25

IV Exercises 27

7 Basic Information 29
7.1 Printing the first point . 29
7.2 Printing file metadata . 30
7.3 Searching near a point . 33

i

8 Translation 35
8.1 Compression . 35
8.2 Reprojection . 36
8.3 Entwine . 39

9 Analysis 43
9.1 Finding the boundary . 43
9.2 Clipping data with polygons . 47
9.3 Colorizing points with imagery . 53
9.4 Removing noise . 57
9.5 Visualizing acquisition density . 60
9.6 Thinning . 65
9.7 Identifying ground . 71
9.8 Generating a DTM . 77
9.9 Creating surface meshes . 88
9.10 Rasterizing Attributes . 90

10 Python 99
10.1 Plotting a histogram . 99

11 Georeferencing 105
11.1 Georeferencing . 105

12 Batch Processing 109
12.1 Batch Processing . 109

V Final Project 115

VI Notes 119

13 Notes 121

14 Notes 123

15 Notes 125

16 Notes 127

17 Notes 129

18 Notes 131

Bibliography 133

Index 135

ii

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Author Howard Butler

Author Pete Gadomski

Author Dr. Craig Glennie

Author Michael Smith

Author Dr. Adam Steer

Contact howard@hobu.co

Date 08/26/2019

CONTENTS 1

mailto:howard@hobu.co

Point Cloud Processing and Analysis with PDAL, 08/26/2019

2 CONTENTS

Part I

Introduction

3

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1. Introduction to LiDAR (page 11)

2. Introduction to PDAL (https://pdal.io/about.html#about)

3. Software Installation (page 25)

4. Basic Information (page 29)

5. Translation (page 35)

6. Analysis (page 43)

7. Georeferencing (page 105)

5

https://pdal.io/about.html#about

Point Cloud Processing and Analysis with PDAL, 08/26/2019

6

CHAPTER

ONE

MATERIALS

1.1 Slides

• Slides (https://pdal-workshop-2019.s3.amazonaws.com/slides.zip)

1.2 Workshop Materials

These materials are available at https://pdal-workshop-2019.s3.amazonaws.com/ as both a
PDF and an HTML website.

• PDF download (https://pdal-workshop-2019.s3.amazonaws.com/PDAL-workshop.pdf)

• HTML (https://pdal-workshop-2019.s3.amazonaws.com/PDAL-workshop-html.zip)

1.3 USB Example Data Drive

A companion USB drive containing workshop example data is required to follow along with
these examples.

7

https://pdal-workshop-2019.s3.amazonaws.com/slides.zip
https://pdal-workshop-2019.s3.amazonaws.com/
https://pdal-workshop-2019.s3.amazonaws.com/PDAL-workshop.pdf
https://pdal-workshop-2019.s3.amazonaws.com/PDAL-workshop-html.zip

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Note: A drive image is available for download at
https://pdal-workshop-2019.s3.amazonaws.com/PDAL-Workshop-complete.zip

8 Chapter 1. Materials

https://pdal-workshop-2019.s3.amazonaws.com/PDAL-Workshop-complete.zip

Part II

Introduction to LiDAR

9

Point Cloud Processing and Analysis with PDAL, 08/26/2019

LiDAR is a remote sensing technique that uses visible or near-infrared laser energy to measure
the distance between a sensor and an object. LiDAR sensors are versatile and (often) mobile;
they help autonomous cars avoid obstacles and make detailed topographic measurements from
space. Before diving into LiDAR data processing, we will spend a bit of time reviewing some
LiDAR fundamentals and discussing some terms of art.

11

Point Cloud Processing and Analysis with PDAL, 08/26/2019

12

CHAPTER

TWO

TYPES OF LIDAR

LiDAR systems, generally speaking, come in one of three types:

• Pulse-based, or linear-mode, systems emit a pulse of laser energy and measure the time
it takes for that energy to travel to a target, bounce off the target, and be returned to the
sensor. These systems are called linear-mode because they (generally) only have a single
aperture, and so can only measure distance along a single vector at any point in time.
Pulse-based systems are very common, and are usually what you would think of when
you think of LiDAR.

• Phase-based LiDAR systems measure distance via interferometry, that is, by using the
phase of a modulated laser beam to calculate a distance as a fraction of the modulated
signal’s wavelength. Phase-based systems can be very precise, on the order of a few
millimeters, but since they require comparatively more energy than the other two types
they are usually used for short-range (e.g. indoor) scanning.

• Geiger-mode, or photon-counting, systems use extremely sensitive detectors that can
be triggered by a single photon. Since only a single photon is required to trigger a
measurement, these systems can operate at much much higher altitudes than linear mode
systems. However, Geiger-mode systems are relatively new and suffer from very high
amounts of noise and other operational restrictions, making them significantly less
common than linear-mode systems.

Note: Unless otherwise noted, if we talk about a LiDAR scanner in this program, we will be
referring to a pulse-based (linear) system.

13

Point Cloud Processing and Analysis with PDAL, 08/26/2019

14 Chapter 2. Types of LiDAR

CHAPTER

THREE

MODES OF LIDAR COLLECTION

LiDAR collects are generally categorized into four subjective types:

• Terrestrial LiDAR Scanning (TLS): scanning with a stationary LiDAR sensor, usually
mounted on a tripod.

• Airborne LiDAR scanning (ALS): also called airborne laser swath mapping (ALSM),
scanning with a LiDAR scanner mounted to a fixed-wing or rotor aircraft.

• Mobile LiDAR scanning (MLS): scanning from a ground-based vehicle, such as a car.

• Unmanned LiDAR scanning (ULS): scanning with drones or other unmanned vehicles.

With the exception of stationary TLS, LiDAR scanning generally requires the use of an
integrated GNSS/IMU (Global Navigation Satellite System/Inertial Motion Unit), which
provides information about the position, rotation, and motion of the scanning platform.

Note: As stated in the class description, we will focus on mobile and airborne laser scanning
(MLS/ALS), though we will also use some TLS data.

15

Point Cloud Processing and Analysis with PDAL, 08/26/2019

16 Chapter 3. Modes of LiDAR Collection

CHAPTER

FOUR

GEOREFERENCING

LiDAR scanners collect information in the Scanner’s Own Coordinate System (SOCS); this is
a coordinate system centered at the scanner. The process of rotating, translating, and (possibly)
transforming a point cloud into a real-world spatial reference system is known as
georeferencing.

In the case of TLS, georeferencing is simply a matter of discovering the position and
orientation of the static scanner. This is usually done with GNSS control points, which are used
to solve for the scanner’s position via least-squares.

For mobile or airborne LiDAR scanning, it is necessary to merge the scanner’s points with the
GNSS/IMU data. This can be done on-the-fly or as a part of a post-processing workflow. Since
this is a common operation for mobile and airborne LiDAR collects, we will spend a moment
discussing the methods and complications for georeferencing mobile LiDAR and GNSS/IMU
data.

4.1 Integrating LiDAR and GNSS/IMU data

The LiDAR georeferencing equation is well-established; we present a version here from
[Gle07]:

p𝑙
𝐺 = p𝑙

𝐺𝑃𝑆 +R𝑙
𝑏

(︀
R𝑏

𝑠r
𝑠 − l𝑏

)︀
(4.1)

where:

• p𝑙
𝐺 are the coordinates of the target point in the global reference frame

• p𝑙
𝐺𝑃𝑆 are the coordinates of the GNSS sensor in the global reference frame

• R𝑙
𝑏 is the rotation matrix from the navigation frame to the global reference frame

• R𝑏
𝑠 is the rotation matrix from the scanner’s frame to the navigation frame (boresight

matrix)

• r𝑠 is the coordinates of the laser point in the scanner’s frame

17

Point Cloud Processing and Analysis with PDAL, 08/26/2019

• l𝑏 is the lever-arm offset between the scanner’s original and the navigation’s origin

This equation contains fourteen unknowns, and in order to georeference a single LiDAR return
we must determine all fourteen variables at the time of the pulse.

As a rule of thumb, the position, attitude, and motion of the scanning platform (aircraft,
vehicle, etc) are sampled at a much lower rate than the pulse rate of the laser — rates of ~1Hz
are common for GNSS/IMU sampling. In order to match the GNSS/IMU sampling rate with
the sampling rate of the laser, GNSS/IMU measurements are interpolated to line up with the
LiDAR measurements. Then, these positions and attitudes are combined via Equation (4.1) to
create a final, georeferenced point cloud.

Note: While lever-arm offsets are usually taken from the schematic drawings of the LiDAR
mounting system, the boresight matrix cannot be reliably determined from drawings alone.
The boresight matrix must therefore be determined either via manual or automated boresight
calibration using actual LiDAR data of planar surfaces, such as the roof and sides of buildings.
The process for determining a boresight calibration from LiDAR data is beyond the scope of
this class.

18 Chapter 4. Georeferencing

CHAPTER

FIVE

DISCRETE-RETURN VS. FULL-WAVEFORM

Pulse-based LiDAR systems use the round-trip travel time of a pulse of laser energy to measure
distances. The outgoing pulse of a LiDAR system is roughly (but not exactly) a Gaussian:

This pulse can interact with multiple objects in a scene before it is returned to the sensor. Here
is an example of a LiDAR return:

As you can see, this return pulse can be very complicated. While there is more information
contained in the “full waveform” picture displayed above, many LiDAR consumers are only
interested in detecting the presence or absence of an object — simplistically, the peaks in that
waveform.

Full waveform data is used only in specialized circumstances. If you have or receive LiDAR
data, it will usually be discrete return (point clouds). Processing full waveform data is beyond
the scope of this class.

Note: PDAL is a discrete-return point cloud processing library. It does not have any
functionality to analyse or process full waveform data.

19

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 1: A real-world outgoing LiDAR pulse.

20 Chapter 5. Discrete-Return vs. Full-Waveform

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 2: A real-world incoming LiDAR return. Potential discrete-return peaks are marked in red.

21

Point Cloud Processing and Analysis with PDAL, 08/26/2019

22 Chapter 5. Discrete-Return vs. Full-Waveform

Part III

Software Installation

23

CHAPTER

SIX

CONDA

6.1 What is Conda

Conda is an open source package management system and environment management system
that runs on Windows, macOS and Linux. Conda quickly installs, runs and updates packages
and their dependencies. Conda easily creates, saves, loads and switches between environments
on your local computer. It was created for Python programs, but it can package and distribute
software for any language..

6.2 How will we use Conda?

PDAL stands on the shoulders of giants. It uses GDAL, GEOS, and many other dependencies
(https://pdal.io/development/compilation/index.html#building). Because of this, it is very
challenging to build it yourself. We could easily burn an entire workshop learning the esoteric
build mysteries of PDAL and all of its dependencies. Fortunately, Conda provides us a
fully-featured known configuration to run our examples and exercises without having to suffer
so much, and provides it for Windows, Linux, and macOS.

Note: Not everyone uses Conda. Another alternative to get a known configuration is to go
through the workshop using docker as your platform. A previous edition of the workshop was
provided as Docker, but it was found to be a bit too difficult to follow.

6.3 Installing Conda

1. Copy the entire contents of your workshop USB key to a PDAL directory in your home
directory (something like C:\Users\hobu\PDAL) or the equivalent for your OS. We
will refer to this location for the rest of the workshop materials.

25

https://pdal.io/development/compilation/index.html#building

Point Cloud Processing and Analysis with PDAL, 08/26/2019

2. Download the Conda installer for your OS setup.
https://docs.conda.io/en/latest/miniconda.html

3. After installing Conda, create an environment for PDAL with:

conda create --name pdalworkshop

4. Then activate the new environment:

conda activate pdalworkshop

5. Install PDAL, Entwine, and GDAL, and install it from conda-forge:

conda install -c conda-forge pdal gdal entwine matplotlib

26 Chapter 6. Conda

https://docs.conda.io/en/latest/miniconda.html

Part IV

Exercises

27

CHAPTER

SEVEN

BASIC INFORMATION

7.1 Printing the first point

7.1.1 Exercise

This exercise uses PDAL to print information from the first point. Issue the following
command in your Conda Shell.

1 pdal info ./exercises/info/interesting.las -p 0

Here’s a summary of what’s going on with that command invocation

1. pdal: The pdal application :)

2. info: We want to run info (https://pdal.io/apps/info.html#info-command) on the data.
All commands are run by the pdal application.

3. ./exercises/info/interesting.las: The file we are running the command
on. PDAL will be able to identify this file is an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html) file from the extension, .las, but not every file type is easily identified.
You can use a pipeline (https://pdal.io/apps/pipeline.html#pipeline-command) to override
which reader (https://pdal.io/stages/readers.html#readers) PDAL will use to open the file.

4. -p 0: -p corresponds to “print a point”, and 0 means to print the first one (computer
people count from 0).

29

https://pdal.io/apps/info.html#info-command
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
https://pdal.io/apps/pipeline.html#pipeline-command
https://pdal.io/stages/readers.html#readers

Point Cloud Processing and Analysis with PDAL, 08/26/2019

7.1.2 Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (https://pdal.io/apps/info.html#info-command). JSON is a
structured, human-readable format that is much simpler than its XML
(https://en.wikipedia.org/wiki/XML) cousin.

2. You can use the writers.text (https://pdal.io/stages/writers.text.html#writers-text) writer
to output point attributes to CSV
(https://en.wikipedia.org/wiki/Comma-separated_values) format for other processing.

3. Output help information on the command line by issuing the --help option

4. A common query with pdal info is --all, which will print all header, metadata,
and statistics about a file.

7.2 Printing file metadata

7.2.1 Exercise

This exercise uses PDAL to print metadata information. Issue the following command in your
Conda Shell.

30 Chapter 7. Basic Information

../../../_images/info-interesting-single-point.png
https://en.wikipedia.org/wiki/JSON
https://pdal.io/apps/info.html#info-command
https://en.wikipedia.org/wiki/XML
https://pdal.io/stages/writers.text.html#writers-text
https://en.wikipedia.org/wiki/Comma-separated_values

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1 pdal info ./exercises/info/interesting.las --metadata

Note: PDAL metadata (https://pdal.io/development/metadata.html#metadata) is returned a in
a tree structure corresponding to processing pipeline that produced it.

See also:

Use the JSON (https://en.wikipedia.org/wiki/JSON) processing capabilities of your favorite
processing software to selectively access and manipulate values.

• Python JSON library (https://docs.python.org/2/library/json.html)

• jsawk (https://github.com/micha/jsawk) (like awk but for JSON data)

• jq (https://stedolan.github.io/jq/) (command line processor for JSON)

• Ruby JSON library (http://ruby-doc.org/stdlib-2.0.0/libdoc/json/rdoc/JSON.html)

Structured Metadata Output

Many command-line utilities output their data in a human-readable custom format. The
downsides to this approach are significant. PDAL was designed to be used in the context of
other software tools driving it. For example, it is quite common for PDAL to be used in data
validation scenarios. Other programs might need to inspect information in PDAL’s output and
then act based on the values. A human-readable format would mean that downstream program
would need to write a parser to consume PDAL’s special format.

7.2. Printing file metadata 31

https://pdal.io/development/metadata.html#metadata
https://en.wikipedia.org/wiki/JSON
https://docs.python.org/2/library/json.html
https://github.com/micha/jsawk
https://stedolan.github.io/jq/
http://ruby-doc.org/stdlib-2.0.0/libdoc/json/rdoc/JSON.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

JSON (https://en.wikipedia.org/wiki/JSON) provides a nice balance between human- and
machine- readable, but even then it can be quite hard to find what you’re looking for, especially
if the output is long. pdal command output used in conjunction with a JSON parsing tool like
jq provide a powerful inspection combination.

For example, we might only care about the system_id and compressed flag for this
particular file. Our simple pdal info --metadata command gives us that, but it also
gives us a bunch of other stuff we don’t need at the moment either. Let’s focus on extracting
what we want using the jq command.

1 pdal info ./exercises/info/interesting.las --metadata \
2 | jq ".metadata.compressed, .metadata.system_id"

1 pdal info ./exercises/info/interesting.las --metadata ^
2 | jq ".metadata.compressed, .metadata.system_id"

Note: PDAL’s JSON output is very powerfully combined with the processing capabilities of
other programming languages such as JavaScript or Python. Both of these languages have
excellent built-in tools for consuming JSON, along with plenty of other features to allow you
to do something with the data inside the data structures. As we will see later in the workshop,
this PDAL feature is one that makes construction of custom data processing workflows with
PDAL very convenient.

7.2.2 Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (https://pdal.io/apps/info.html#info-command). JSON
provides human and machine-readable text data.

2. The PDAL metadata document (https://pdal.io/development/metadata.html#metadata)
contains background and information about specific metadata entries and what they
mean.

3. Metadata available for a given file depends on the stage that produces the data. Readers
(https://pdal.io/stages/readers.html#readers) produce same-named values where possible,
but it is common that variables are different. Filters
(https://pdal.io/stages/filters.html#filters) and even writers
(https://pdal.io/stages/writers.html#writers) can also produce metadata entries.

4. Spatial reference system or coordinate system information is a kind of special metadata.

32 Chapter 7. Basic Information

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://pdal.io/apps/info.html#info-command
https://pdal.io/development/metadata.html#metadata
https://pdal.io/stages/readers.html#readers
https://pdal.io/stages/filters.html#filters
https://pdal.io/stages/writers.html#writers

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Spatial references are come directly from source data or are provided via options in
PDAL.

7.3 Searching near a point

7.3.1 Exercise

This exercise uses PDAL to find points near a given search location. Our scenario is a simple
one – we want to find the two points nearest the midpoint of the bounding cube of our
interesting.las data file.

First we need to find the midpoint of the bounding cube. To do that, we need to print the
--all info for the file and look for the bbox output:

pdal info ./exercises/info/interesting.las --all | jq .stats.bbox.
→˓native.bbox

Find the average the X, Y, and Z values:

x = 635619.85 + (638982.55 - 635619.85)/2 = 637301.20
y = 848899.70 + (853535.43 - 848899.70)/2 = 851217.57
z = 406.59 + (586.38 - 406.59)/2 = 496.49

With our “center point”, issue the --query option to pdal info and return the three
nearest points to it:

pdal info ./exercises/info/interesting.las --query "637301.20,
→˓851217.57, 496.49/3"

Note: The /3 portion of our query string tells the query command to give us the 3 nearest
points. Adjust this value to return data in closest-distance ordering.

7.3. Searching near a point 33

../../../_images/info-near-bbox.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

7.3.2 Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (https://pdal.io/apps/info.html#info-command). JSON is a
structured, human-readable format that is much simpler than its XML
(https://en.wikipedia.org/wiki/XML) cousin.

2. The --query option of info (https://pdal.io/apps/info.html#info-command) constructs a
KD-tree (https://en.wikipedia.org/wiki/K-d_tree) of the entire set of points in memory. If
you have really large data sets, this isn’t going to work so well, and you will need to
come up with a different solution.

34 Chapter 7. Basic Information

../../../_images/info-near-point.png
https://en.wikipedia.org/wiki/JSON
https://pdal.io/apps/info.html#info-command
https://en.wikipedia.org/wiki/XML
https://pdal.io/apps/info.html#info-command
https://en.wikipedia.org/wiki/K-d_tree

CHAPTER

EIGHT

TRANSLATION

8.1 Compression

8.1.1 Exercise

This exercise uses PDAL to compress ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data into LASzip (http://laszip.org).

1. Issue the following command in your Conda Shell.

pdal translate ./exercises/translation/interesting.laz \
./exercises/translation/interesting.las

pdal translate ./exercises/translation/interesting.laz ^
./exercises/translation/interesting.las

LAS is a very fluffy binary format. Because of the way the data are stored,
there is ample redundant information, and LASzip (http://laszip.org) is an
open source solution for compressing this information. Note that we are
actually inflating the data here. Its laz from the workshop and we are
converting it to las.

2. Verify that the laz data is compressed over the las:

ls -alh ./exercises/translation/interesting.laz

ls -alh ./exercises/translation/interesting.las

dir ./exercises/translation/interesting.laz

dir ./exercises/translation/interesting.las

35

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://laszip.org

Point Cloud Processing and Analysis with PDAL, 08/26/2019

See also:

LAS Reading and Writing with PDAL (https://pdal.io/tutorial/las.html#las-tutorial) contains
many pointers about settings for ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data and how to achieve specific data behaviors with PDAL.

8.1.2 Notes

1. Typical LASzip (http://laszip.org) compression is 5:1 to 8:1, depending on the type of
LiDAR (https://en.wikipedia.org/wiki/Lidar). It is a compression format specifically for
the ASPRS LAS (http://www.asprs.org/Committee-General/LASer-LAS-File-Format-
Exchange-Activities.html) model, however, and will not be as efficient for other types of
point cloud data.

2. You can open and view LAZ data in web browsers using http://plas.io

8.2 Reprojection

8.2.1 Exercise

This exercise uses PDAL to reproject ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data

Issue the following command in your Conda Shell:

1 pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz \
2 ./exercises/translation/csite-dd.laz reprojection \
3 --filters.reprojection.out_srs="EPSG:4326"

36 Chapter 8. Translation

../../../_images/compression-verify.png
https://pdal.io/tutorial/las.html#las-tutorial
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
https://en.wikipedia.org/wiki/Lidar
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://plas.io
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1 pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz ^
2 ./exercises/translation/csite-dd.laz reprojection ^
3 --filters.reprojection.out_srs="EPSG:4326"

Unfortunately this doesn’t produce the intended results for us. Issue the following pdal
info command to see why:

pdal info ./exercises/translation/csite-dd.laz --all \
| jq .stats.bbox.native.bbox

pdal info ./exercises/translation/csite-dd.laz --all ^
| jq .stats.bbox.native.bbox

--all dumps all info (https://pdal.io/apps/info.html#info-command) information about the
file, and we can then use the jq (https://stedolan.github.io/jq/) command to extract out the
“native” (same coordinate system as the file itself) bounding box. As we can see, the problem
is we only have two decimal places of precision on the bounding box. For geographic
coordinate systems, this isn’t enough precision.

Printing the first point confirms this problem:

8.2. Reprojection 37

../../../_images/reprojection-run-command.png
../../../_images/reprojection-wrong-scale.png
https://pdal.io/apps/info.html#info-command
https://stedolan.github.io/jq/

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Some formats, like writers.las (https://pdal.io/stages/writers.las.html#writers-las) do not
automatically set scaling information. PDAL cannot really do this for you because there are a
number of ways to trip up. For latitude/longitude data, you will need to set the scale to smaller
values like 0.0000001. Additionally, LAS uses an offset value to move the origin of the
value. Use PDAL to set that to auto so you don’t have to compute it.

1 pdal translate \
2 ./exercises/analysis/ground/CSite1_orig-utm.laz \
3 ./exercises/translation/csite-dd.laz reprojection \
4 --filters.reprojection.out_srs="EPSG:4326" \
5 --writers.las.scale_x=0.0000001 \
6 --writers.las.scale_y=0.0000001 \
7 --writers.las.offset_x="auto" \
8 --writers.las.offset_y="auto"

1 pdal translate ^
2 ./exercises/analysis/ground/CSite1_orig-utm.laz ^
3 ./exercises/translation/csite-dd.laz reprojection ^
4 --filters.reprojection.out_srs="EPSG:4326" ^
5 --writers.las.scale_x=0.0000001 ^
6 --writers.las.scale_y=0.0000001 ^
7 --writers.las.offset_x="auto" ^
8 --writers.las.offset_y="auto"

38 Chapter 8. Translation

../../../_images/reprojection-first-point.png
https://pdal.io/stages/writers.las.html#writers-las

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Run the pdal info command again to verify the X, Y, and Z dimensions:

8.2.2 Notes

1. filters.reprojection (https://pdal.io/stages/filters.reprojection.html#filters-reprojection)
will use whatever coordinate system is defined by the point cloud file, but you can
override it using the in_srs option. This is useful in situations where the coordinate
system is not correct, not completely specified, or your system doesn’t have all of the
required supporting coordinate system dictionaries.

2. PDAL uses Proj.4 (http://proj4.org) library for reprojection. This library includes the
capability to do both vertical and horizontal datum transformations.

8.3 Entwine

8.3.1 Exercise

This exercise uses PDAL to fetch data from an Entwine index stored in an Amazon Web
Services object store (bucket). Entwine is a point cloud indexing strategy, which rearranges
points into a lossless octree structure known as EPT, for Entwine Point Tiles. The structure is
described here: https://entwine.io/entwine-point-tile.html.

EPT indexes can be used for visualisation as well as analysis and data manipulation at any
scale.

8.3. Entwine 39

../../../_images/reprojection-run-with-scale.png
../../../_images/reprojection-proper-scale.png
https://pdal.io/stages/filters.reprojection.html#filters-reprojection
http://proj4.org
https://entwine.io/entwine-point-tile.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Examples of Entwine usage can be found from very fine photogrammetric surveys to
continental scale lidar management.

US Geological Survey (USGS) example data is here: https://usgs.entwine.io/

We will use a sample data set from Dublin, Ireland
http://potree.entwine.io/data/view.html?r=%22http://na-c.entwine.io/dublin/ept.json%22

1. View the entwine.json file in your editor. If the file does not exist, create it and
paste the following JSON into it:

{
"pipeline": [

{
"type": "readers.ept",
"filename":"https://na-c.entwine.io/dublin/",
"resolution": 5

},
{

"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "0",
"filename":"dublin.laz"

}
]

}

Note: If you use the Developer Console
(https://developers.google.com/web/tools/chrome-devtools/console/) when
visiting http://speck.ly or http://potree.entwine.io, you can see the browser
making requests against the EPT resource at
http://na-c.entwine.io/dublin/ept.json

2. Issue the following command in your Conda Shell.

pdal pipeline ./excercises/translation/entwine.json -v 7

40 Chapter 8. Translation

https://usgs.entwine.io/
http://potree.entwine.io/data/view.html?r=%22http://na-c.entwine.io/dublin/ept.json%22
https://developers.google.com/web/tools/chrome-devtools/console/
http://speck.ly
http://potree.entwine.io
http://na-c.entwine.io/dublin/ept.json

Point Cloud Processing and Analysis with PDAL, 08/26/2019

3. Verify that the data look ok:

pdal info dublin.laz | jq .stats.bbox.native.bbox

pdal info dublin.laz -p 0

4. Visualize the data in http://plas.io

8.3. Entwine 41

../../../_images/entwine-command.png
../../../_images/entwine-info-verify.png
http://plas.io

Point Cloud Processing and Analysis with PDAL, 08/26/2019

8.3.2 Notes

1. readers.ept (https://pdal.io/stages/readers.ept.html#readers-ept) contains more detailed
documentation about how to use PDAL’s EPT reader .

42 Chapter 8. Translation

../../../_images/entwine-view.png
https://pdal.io/stages/readers.ept.html#readers-ept

CHAPTER

NINE

ANALYSIS

9.1 Finding the boundary

This exercise uses PDAL to find a tight-fitting boundary of an aerial scan. Printing the
coordinates of the boundary for the file is quite simple using a single pdal info call, but
visualizing the boundary is more complicated. To complete this exercise, we are going to use
qgis to view the boundary, which means we must first install it on our system.

9.1.1 Exercise

Note: We are going to run using the Uncompahgre data in the ./density directory.

1 pdal info ./exercises/analysis/density/uncompahgre.laz --boundary

43

../../../../_images/boundary-text-output.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

. . . a giant blizzard of coordinate output scrolls across our terminal. Not very useful.

Instead, let’s generate some kind of vector output we can visualize with qgis. The pdal
tindex is the “tile index” command, and it outputs a vector geometry file for each point
cloud file it reads. It generates this boundary using the same mechanism we invoked above –
filters.hexbin (https://pdal.io/stages/filters.hexbin.html#filters-hexbin). We can leverage this
capability to output a contiguous boundary of the uncompahgre.laz file.

1 pdal tindex create --tindex ./exercises/analysis/boundary/boundary.
→˓sqlite \

2 --filespec ./exercises/analysis/density/uncompahgre.laz \
3 -f SQLite

1 pdal tindex create --tindex ./exercises/analysis/boundary/boundary.
→˓sqlite ^

2 --filespec ./exercises/analysis/density/uncompahgre.laz ^
3 -f SQLite

Once we’ve run the tindex (https://pdal.io/apps/tindex.html#tindex-command), we can now
visualize our output:

Open qgis and select Add Vector Layer:

44 Chapter 9. Analysis

https://pdal.io/stages/filters.hexbin.html#filters-hexbin
../../../../_images/boundary-tindex-run.png
https://pdal.io/apps/tindex.html#tindex-command

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Navigate to the exercises/analysis/boundary directory and then open the
boundary.sqlite file:

9.1. Finding the boundary 45

../../../../_images/density-add-layer.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.1.2 Notes

1. The PDAL boundary computation is an approximation based on a hexagon tessellation.
It uses the software at http://github.com/hobu/hexer to do this task.

2. filters.hexbin (https://pdal.io/stages/filters.hexbin.html#filters-hexbin) can also be used
by the density (https://pdal.io/apps/density.html#density-command) to generate a
tessellated surface. See the Visualizing acquisition density (page 60) example for steps to
achieve this.

3. The tindex (https://pdal.io/apps/tindex.html#tindex-command) can be used to generate
boundaries for large collections of data. A boundary-based indexing scheme is
commonly used in LiDAR processing, and PDAL supports it through the tindex
application. You can also use this command to merge data together (query across
boundaries, for example).

46 Chapter 9. Analysis

../../../../_images/boundary-qgis-view.png
http://github.com/hobu/hexer
https://pdal.io/stages/filters.hexbin.html#filters-hexbin
https://pdal.io/apps/density.html#density-command
https://pdal.io/apps/tindex.html#tindex-command

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.2 Clipping data with polygons

This exercise uses PDAL to apply to clip data with polygon geometries.

Note: This exercise is an adaption of the PDAL tutorial
(https://pdal.io/tutorial/clipping/index.html#clipping).

9.2.1 Exercise

The autzen.laz file is a staple in PDAL and libLAS examples. We will use this file to
demonstrate clipping points with a geometry. We’re going to clip out the stadium into a new
LAS file.

Data preparation

The data are mixed in two different coordinate systems. The LAZ
(https://pdal.io/stages/readers.las.html#readers-las) file is in Oregon State Plane Ft.
(http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx) and
the GeoJSON (http://geojson.org) defining the polygons, attributes.json, is in
EPSG:4326 (http://epsg.io/4326). We have two options – project the point cloud into the

9.2. Clipping data with polygons 47

https://pdal.io/tutorial/clipping/index.html#clipping
../../../../_images/clipping-autzen-view.png
https://pdal.io/stages/readers.las.html#readers-las
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://geojson.org
http://epsg.io/4326

Point Cloud Processing and Analysis with PDAL, 08/26/2019

coordinate system of the attribute polygons, or project the attribute polygons into the
coordinate system of the points. The latter is preferable in this case because it will be less math
and therefore less computation. To make it convenient, we can utilize OGR
(http://www.gdal.org)’s VRT (http://www.gdal.org/drv_vrt.html) capability to reproject the
data for us on-the-fly:

<OGRVRTDataSource>
<OGRVRTWarpedLayer>

<OGRVRTLayer name="OGRGeoJSON">
<SrcDataSource>./exercises/analysis/clipping/attributes.

→˓json</SrcDataSource>
<SrcLayer>attributes</SrcLayer>
<LayerSRS>EPSG:4326</LayerSRS>

</OGRVRTLayer>
<TargetSRS>+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_

→˓0=-120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft +no_
→˓defs</TargetSRS>

</OGRVRTWarpedLayer>
</OGRVRTDataSource>

Note: This VRT file is available in your workshop materials in the
./exercises/analysis/clipping/attributes.vrt file. You will need to open
this file, go to line 4 and replace ./ with the correct path for your machine.

A GDAL or OGR VRT is a kind of “virtual” data source definition type that combines a
definition of data and a processing operation into a single, readable data stream.

48 Chapter 9. Analysis

http://www.gdal.org
http://www.gdal.org/drv_vrt.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Note: The GeoJSON file does not have an externally-defined coordinate system, so we are
explictly setting one with the LayerSRS parameter. If your data does have coordinate system
information, you don’t need to do that. See the OGR VRT documentation
(http://www.gdal.org/drv_vrt.html) for more details.

Pipeline breakdown

{
"pipeline": [

"./exercises/analysis/clipping/autzen.laz",
{

"column": "CLS",
"datasource": "./exercises/analysis/clipping/attributes.

→˓vrt",
"dimension": "Classification",

(continues on next page)

9.2. Clipping data with polygons 49

../../../../_images/clipping-view-polygons.png
http://www.gdal.org/drv_vrt.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

"layer": "OGRGeoJSON",
"type": "filters.overlay"

},
{

"limits": "Classification[6:6]",
"type": "filters.range"

},
"./exercises/analysis/clipping/stadium.las"

]
}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/clipping/clipping.json file. Remember to replace
each of the three occurrences of ./ in this file with the correct location for your machine.

1. Reader

autzen.laz is the LASzip (http://laszip.org) file we will clip.

2. filters.overlay (https://pdal.io/stages/filters.overlay.html#filters-overlay)

The filters.overlay (https://pdal.io/stages/filters.overlay.html#filters-overlay) filter allows you to
assign values for coincident polygons. Using the VRT we defined in Data preparation
(page 47), filters.overlay (https://pdal.io/stages/filters.overlay.html#filters-overlay) will assign
the values from the CLS column to the Classification field.

3. filters.range (https://pdal.io/stages/filters.range.html#filters-range)

The attributes in the attributes.json file include polygons with values 2, 5, and 6. We
will use filters.range (https://pdal.io/stages/filters.range.html#filters-range) to keep points with
Classification values in the range of 6:6.

4. Writer

We will write our content back out using a writers.las
(https://pdal.io/stages/writers.las.html#writers-las).

50 Chapter 9. Analysis

http://laszip.org
https://pdal.io/stages/filters.overlay.html#filters-overlay
https://pdal.io/stages/filters.overlay.html#filters-overlay
https://pdal.io/stages/filters.range.html#filters-range
https://pdal.io/stages/writers.las.html#writers-las

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Execution

Invoke the following command, substituting accordingly, in your Conda Shell:

The –nostream option disables stream mode. The point-in-polygon check (see notes) performs
poorly in stream mode currently.

1 pdal pipeline ./exercises/analysis/clipping/clipping.json --nostream

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
./exercises/analysis/clipping/stadium.las output. In the example below,
we opened the file to view it using the http://plas.io website.

9.2. Clipping data with polygons 51

../../../../_images/clipping-run-command.png
http://plas.io

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.2.2 Notes

1. filters.overlay (https://pdal.io/stages/filters.overlay.html#filters-overlay) does
point-in-polygon checks against every point that is read.

2. Points that are on the boundary are included.

52 Chapter 9. Analysis

../../../../_images/clipping-stadium-clipped.png
https://pdal.io/stages/filters.overlay.html#filters-overlay

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.3 Colorizing points with imagery

This exercise uses PDAL to apply color information from a raster onto point data. Point cloud
data, especially LiDAR (https://en.wikipedia.org/wiki/Lidar), do not often have coincident
color information. It is possible to project color information onto the points from an imagery
source. This makes it convenient to see data in a larger context.

9.3.1 Exercise

PDAL provides a filter (https://pdal.io/stages/filters.html#filters) to apply color information
from raster files onto point cloud data. Think of this operation as a top-down projection of
RGB color values on the points.

Because this operation is somewhat complex, we are going to use a pipeline to define it.

1 {
2 "pipeline": [
3 "./exercises/analysis/colorization/uncompahgre.laz",
4 {
5 "type": "filters.colorization",
6 "raster": "./exercises/analysis/colorization/casi-2015-

→˓04-29-weekly-mosaic.tif"
7 },
8 {
9 "type": "filters.range",

10 "limits": "Red[1:]"
11 },
12 {
13 "type": "writers.las",
14 "compression": "true",
15 "minor_version": "2",
16 "dataformat_id": "3",
17 "filename":"./exercises/analysis/colorization/

→˓uncompahgre-colored.laz"
18 }
19]
20 }

Note: This JSON file is available in your workshop materials in the
./exercises/analysis/colorization/colorize.json file. Remember to open
this file and replace each occurrence of ./ with the correct path for your machine.

9.3. Colorizing points with imagery 53

https://en.wikipedia.org/wiki/Lidar
https://pdal.io/stages/filters.html#filters

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Pipeline breakdown

1. Reader

After our pipeline errata, the first item we define in the pipeline is the point cloud file we’re
going to read.

"./exercises/analysis/colorization/uncompahgre.laz",

2. filters.colorization (https://pdal.io/stages/filters.colorization.html#filters-
colorization)

The filters.colorization (https://pdal.io/stages/filters.colorization.html#filters-colorization)
PDAL filter does most of the work for this operation. We’re going to use the default data
scaling options. This filter will create PDAL dimensions Red, Green, and Blue.

{
"type": "filters.colorization",
"raster": "./exercises/analysis/colorization/casi-2015-04-29-

→˓weekly-mosaic.tif"
},

3. filters.range (https://pdal.io/stages/filters.range.html#filters-range)

A small challenge is the raster will colorize many points with NODATA values. We are going
to use the filters.range (https://pdal.io/stages/filters.range.html#filters-range) to filter keep any
points that have Red >= 1.

{
"type": "filters.range",
"limits": "Red[1:]"

},

4. writers.las (https://pdal.io/stages/writers.las.html#writers-las)

We could just define the uncompahgre-colored.laz filename, but we want to add a few
options to have finer control over what is written. These include:

{
"type": "writers.las",
"compression": "true",

(continues on next page)

54 Chapter 9. Analysis

https://pdal.io/stages/filters.colorization.html#filters-colorization
https://pdal.io/stages/filters.range.html#filters-range

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

"minor_version": "2",
"dataformat_id": "3",
"filename":"./exercises/colorization/analysis/uncompahgre-

→˓colored.laz"
}

1. compression: LASzip (http://laszip.org) data is ~6x smaller than ASPRS LAS.

2. minor_version: We want to make sure to output LAS 1.2, which will provide the
widest compatibility with other softwares that can consume LAS.

3. dataformat_id: Format 3 supports both time and color information

Note: writers.las (https://pdal.io/stages/writers.las.html#writers-las) provides a number of
possible options to control how your LAS files are written.

Execution

Invoke the following command, substituting accordingly, in your Conda Shell:

1 pdal pipeline ./exercises/analysis/colorization/colorize.json

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
uncompahgre-colored.laz output. In the example below, we simply opened the file
using the http://plas.io website.

9.3. Colorizing points with imagery 55

http://laszip.org
https://pdal.io/stages/writers.las.html#writers-las
http://plas.io

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.3.2 Notes

1. Applying color information that is not time-coincident with the point cloud data will
mean you will see discontinuities.

2. GDAL is used to read the image source. Any GDAL-readable data format can be used.

3. There are performance considerations to be aware of depending on the raster format and
type being used. See filters.colorization
(https://pdal.io/stages/filters.colorization.html#filters-colorization) for more information.

4. These data are of Uncompahgre Basin
(https://en.wikipedia.org/wiki/Uncompahgre_River) courtesy of the NASA Airborne
Snow Observatory (http://aso.jpl.nasa.gov/).

56 Chapter 9. Analysis

https://pdal.io/stages/filters.colorization.html#filters-colorization
https://en.wikipedia.org/wiki/Uncompahgre_River
http://aso.jpl.nasa.gov/
http://aso.jpl.nasa.gov/

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.4 Removing noise

This exercise uses PDAL to remove unwanted noise in an airborne LiDAR collection.

9.4.1 Exercise

PDAL provides the outlier filter (https://pdal.io/stages/filters.outlier.html#filters-outlier) to
apply a statistical filter to data.

Because this operation is somewhat complex, we are going to use a pipeline to define it.

{
"pipeline": [

"./exercises/analysis/denoising/18TWK820985.laz",
{

"type": "filters.outlier",
"method": "statistical",
"multiplier": 3,
"mean_k": 8

},
{

"type": "filters.range",
"limits": "Classification![7:7],Z[-100:3000]"

},
{

"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "0",
"filename":"./exercises/analysis/denoising/clean.laz"

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/denoising/denoise.json file.

Pipeline breakdown

9.4. Removing noise 57

https://pdal.io/stages/filters.outlier.html#filters-outlier

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1. Reader

After our pipeline errata, the first item we define in the pipeline is the point cloud file we’re
going to read.

"./exercises/analysis/denoising/18TWK820985.laz",

2. filters.outlier (https://pdal.io/stages/filters.outlier.html#filters-outlier)

The PDAL outlier filter (https://pdal.io/stages/filters.outlier.html#filters-outlier) does most of
the work for this operation.

{
"type": "filters.outlier",
"method": "statistical",
"multiplier": 3,
"mean_k": 8

},

3. filters.range (https://pdal.io/stages/filters.range.html#filters-range)

At this point, the outliers have been classified per the LAS specification as low/noise points
with a classification value of 7. The range filter
(https://pdal.io/stages/filters.range.html#filters-range) can remove these noise points by
constructing a range (https://pdal.io/stages/filters.range.html#ranges) with the value
Classification![7:7], which passes every point with a Classification value not
equal to 7.

Even with the filters.outlier (https://pdal.io/stages/filters.outlier.html#filters-outlier) operation,
there is still a cluster of points with extremely negative Z values. These are some artifact or
miscomputation of processing, and we don’t want these points. We can construct another range
(https://pdal.io/stages/filters.range.html#ranges) to keep only points that are within the range
−100 <= 𝑍 <= 3000.

Both ranges (https://pdal.io/stages/filters.range.html#ranges) are passed as a comma-separated
list to the range filter (https://pdal.io/stages/filters.range.html#filters-range) via the limits
option.

{
"type": "filters.range",
"limits": "Classification![7:7],Z[-100:3000]"

},

58 Chapter 9. Analysis

https://pdal.io/stages/filters.outlier.html#filters-outlier
https://pdal.io/stages/filters.range.html#filters-range
https://pdal.io/stages/filters.range.html#ranges
https://pdal.io/stages/filters.outlier.html#filters-outlier
https://pdal.io/stages/filters.range.html#ranges
https://pdal.io/stages/filters.range.html#ranges
https://pdal.io/stages/filters.range.html#filters-range

Point Cloud Processing and Analysis with PDAL, 08/26/2019

4. writers.las (https://pdal.io/stages/writers.las.html#writers-las)

We could just define the clean.laz filename, but we want to add a few options to have finer
control over what is written. These include:

{
"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "0",
"filename":"./exercises/analysis/denoising/clean.laz"

}

1. compression: LASzip (http://laszip.org) data is ~6x smaller than ASPRS LAS.

2. minor_version: We want to make sure to output LAS 1.2, which will provide the
widest compatibility with other softwares that can consume LAS.

3. dataformat_id: Format 3 supports both time and color information

Note: writers.las (https://pdal.io/stages/writers.las.html#writers-las) provides a number of
possible options to control how your LAS files are written.

Execution

Invoke the following command, substituting accordingly, in your ‘ Shell‘:

pdal pipeline ./exercises/analysis/denoising/denoise.json

Visualization

Use one of the point cloud visualization tools you installed to take a look at your clean.laz
output. In the example below, we simply opened the file using the Fugro Viewer
(http://www.fugroviewer.com/)

9.4. Removing noise 59

http://laszip.org
https://pdal.io/stages/writers.las.html#writers-las
../../../../_images/denoise-run-command.png
http://www.fugroviewer.com/

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.4.2 Notes

1. Control the aggressiveness of the algorithm with the mean_k parameter.

2. filters.outlier (https://pdal.io/stages/filters.outlier.html#filters-outlier) requires the entire
set in memory to process. If you have really large files, you are going to need to split
(https://pdal.io/stages/filters.splitter.html#filters-splitter) them in some way.

9.5 Visualizing acquisition density

This exercise uses PDAL to generate a density surface. You can use this surface to summarize
acquisition quality.

9.5.1 Exercise

PDAL provides an application (https://pdal.io/apps/density.html#density-command) to
compute a vector field of hexagons computed with filters.hexbin
(https://pdal.io/stages/filters.hexbin.html#filters-hexbin). It is a kind of simple interpolation,
which we will use for visualization in QGIS (http://qgis.org).

60 Chapter 9. Analysis

../../../../_images/denoise-fugro.png
https://pdal.io/stages/filters.outlier.html#filters-outlier
https://pdal.io/stages/filters.splitter.html#filters-splitter
https://pdal.io/apps/density.html#density-command
https://pdal.io/stages/filters.hexbin.html#filters-hexbin
http://qgis.org

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Command

Invoke the following command, substituting accordingly, in your ‘ Shell‘:

1 pdal density ./exercises/analysis/density/uncompahgre.laz \
2 -o ./exercises/analysis/density/density.sqlite \
3 -f SQLite

1 pdal density ./exercises/analysis/density/uncompahgre.laz ^
2 -o ./exercises/analysis/density/density.sqlite ^
3 -f SQLite

Visualization

The command uses GDAL to output a SQLite (http://sqlite.org) file containing hexagon
polygons. We will now use QGIS (http://qgis.org) to visualize them.

1. Add a vector layer

9.5. Visualizing acquisition density 61

../../../../_images/density-command-run.png
http://sqlite.org
http://qgis.org

Point Cloud Processing and Analysis with PDAL, 08/26/2019

2. Navigate to the output directory

3. Add the density.sqlite file to the view

62 Chapter 9. Analysis

../../../../_images/density-add-layer.png
../../../../_images/density-select-layer.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

4. Right click on the density.sqlite layer in the Layers panel and then choose
Properties.

5. Pick the Graduated drop down

9.5. Visualizing acquisition density 63

../../../../_images/density-file-open.png
../../../../_images/density-graduated-symbols-pick.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

6. Choose the Count column to visualize

7. Choose the Classify button to add intervals

8. Adjust the visualization as desired

64 Chapter 9. Analysis

../../../../_images/density-count-attribute.png
../../../../_images/density-Graduated-symbols.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.5.2 Notes

1. You can control how the density hexagon surface is created by using the options in
filters.hexbin (https://pdal.io/stages/filters.hexbin.html#filters-hexbin).

The following settings will use a hexagon edge size of 24 units.

--filters.hexbin.edge_size=24

2. You can generate a contiguous boundary using PDAL (https://pdal.io/)’s tindex
(https://pdal.io/apps/tindex.html#tindex-command).

9.6 Thinning

This exercise uses PDAL to subsample or thin point cloud data. This might be done to
accelerate processing (less data), normalize point density, or ease visualization.

9.6. Thinning 65

../../../../_images/density-final-render.png
https://pdal.io/stages/filters.hexbin.html#filters-hexbin
https://pdal.io/
https://pdal.io/apps/tindex.html#tindex-command

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.6.1 Exercise

As we showed in the Visualizing acquisition density (page 60) exercise, the points in the
uncompahgre.laz file are not evenly distributed across the entire collection. While we will not
get into reasons why that particular property is good or bad, we note there are three different
sampling strategies we could choose. We can attempt to preserve shape, we can try to
randomly sample, and we can attempt to normalize posting density. PDAL provides capability
for all three:

• Poisson using the filters.sample (https://pdal.io/stages/filters.sample.html#filters-sample)

• Random using a combination of filters.decimation
(https://pdal.io/stages/filters.decimation.html#filters-decimation) and filters.randomize
(https://pdal.io/stages/filters.randomize.html#filters-randomize)

• Voxel using filters.voxelgrid
(https://pdal.io/stages/filters.voxelgrid.html#filters-voxelgrid)

In this exercise, we are going to thin with the Poisson method, but the concept should operate
similarly for the filters.voxelgrid (https://pdal.io/stages/filters.voxelgrid.html#filters-voxelgrid)
approach too.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

1 pdal translate ./exercises/analysis/density/uncompahgre.laz \
2 ./exercises/analysis/thinning/uncompahgre-thin.laz \
3 sample --filters.sample.radius=20

1 pdal translate ./exercises/analysis/density/uncompahgre.laz ^
2 ./exercises/analysis/thinning/uncompahgre-thin.laz ^
3 sample --filters.sample.radius=20

Visualization

http://plas.io has the ability to switch on/off multiple data sets, and we are going to use that
ability to view both the uncompahgre.laz and the uncompahgre-thin.laz file.

66 Chapter 9. Analysis

https://pdal.io/stages/filters.sample.html#filters-sample
https://pdal.io/stages/filters.decimation.html#filters-decimation
https://pdal.io/stages/filters.randomize.html#filters-randomize
https://pdal.io/stages/filters.voxelgrid.html#filters-voxelgrid
https://pdal.io/stages/filters.voxelgrid.html#filters-voxelgrid
../../../../_images/thinning-command-run.png
http://plas.io

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 1: Thinning strategies available in PDAL

9.6. Thinning 67

../../../../_images/thinning-overview.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 2: Selecting multiple data sets in http://plas.io

68 Chapter 9. Analysis

../../../../_images/thinning-select-data.png
http://plas.io

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 3: Full resolution Uncompahgre data set

9.6. Thinning 69

../../../../_images/thinning-select-data.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 4: Uncompahgre thinned at a radius of 20m

70 Chapter 9. Analysis

../../../../_images/thinning-poisson-thin.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.6.2 Notes

1. Poisson sampling is non-destructive. Points that are filtered with filters.sample
(https://pdal.io/stages/filters.sample.html#filters-sample) will retain all attribute
information.

9.7 Identifying ground

This exercise uses PDAL to classify ground returns using the Simple Morphological Filter
(SMRF) technique.

Note: This excerise is an adaptation of the Identifying ground returns using
ProgressiveMorphologicalFilter segmentation
(https://pdal.io/tutorial/pcl_ground/index.html#pcl-ground) tutorial on the PDAL website by
Brad Chambers. You can find more detail and example invocations there.

9.7.1 Exercise

The primary input for Digital Terrain Model
(https://en.wikipedia.org/wiki/Digital_elevation_model) generation is a point cloud with
ground vs. not-ground classifications. In this example, we will use an algorithm provided by
PDAL, the Simple Morphological Filter technique to generate a ground surface.

See also:

You can read more about the specifics of the SMRF algorithm from [Pingle2013]_

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

1 pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz \
2 -o ./exercises/analysis/ground/ground.laz \
3 smrf \
4 -v 4

1 pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz ^
2 -o ./exercises/analysis/ground/ground.laz ^
3 smrf ^
4 -v 4

9.7. Identifying ground 71

https://pdal.io/stages/filters.sample.html#filters-sample
https://pdal.io/tutorial/pcl_ground/index.html#pcl-ground
https://pdal.io/tutorial/pcl_ground/index.html#pcl-ground
https://en.wikipedia.org/wiki/Digital_elevation_model

Point Cloud Processing and Analysis with PDAL, 08/26/2019

As we can see, the algorithm does a great job of discriminating the points, but there’s a few
issues.

72 Chapter 9. Analysis

../../../../_images/ground-run-command.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

There’s noise underneath the main surface that will cause us trouble when we generate a terrain
surface.

9.7. Identifying ground 73

../../../../_images/ground-classified-included.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Filtering

We do not yet have a satisfactory surface for generating a DTM. When we visualize the output
of this ground operation, we notice there’s still some noise. We can stack the call to SMRF
with a call to a the filters.outlier technique we learned about in denoising.

1. Let us start by removing the non-ground data to just view the ground data:

1 pdal translate \
2 ./exercises/analysis/ground/CSite1_orig-utm.laz \
3 -o ./exercises/analysis/ground/ground.laz \
4 smrf range \
5 --filters.range.limits="Classification[2:2]" \

(continues on next page)

74 Chapter 9. Analysis

../../../../_images/ground-classified-included-side.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

6 -v 4

1 pdal translate ^
2 ./exercises/analysis/ground/CSite1_orig-utm.laz ^
3 -o ./exercises/analysis/ground/ground.laz ^
4 smrf range ^
5 --filters.range.limits="Classification[2:2]" ^
6 -v 4

2. Now we will instead use the translate
(https://pdal.io/apps/translate.html#translate-command) command to stack the filters.outlier
(https://pdal.io/stages/filters.outlier.html#filters-outlier) and filters.smrf
(https://pdal.io/stages/filters.smrf.html#filters-smrf) stages:

9.7. Identifying ground 75

../../../../_images/ground-ground-only-view.png
https://pdal.io/apps/translate.html#translate-command
https://pdal.io/stages/filters.outlier.html#filters-outlier
https://pdal.io/stages/filters.smrf.html#filters-smrf

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1 pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz \
2 -o ./exercises/analysis/ground/denoised-ground-only.laz \
3 outlier smrf range \
4 --filters.outlier.method="statistical" \
5 --filters.outlier.mean_k=8 --filters.outlier.multiplier=3.0 \
6 --filters.smrf.ignore="Classification[7:7]" \
7 --filters.range.limits="Classification[2:2]" \
8 --writers.las.compression=true \
9 --verbose 4

1 pdal translate ./exercises/analysis/ground/CSite1_orig-utm.laz ^
2 -o ./exercises/analysis/ground/denoised-ground-only.laz ^
3 outlier smrf range ^
4 --filters.outlier.method="statistical" ^
5 --filters.outlier.mean_k=8 --filters.outlier.multiplier=3.0 ^
6 --filters.smrf.ignore="Classification[7:7]" ^
7 --filters.range.limits="Classification[2:2]" ^
8 --writers.las.compression=true ^
9 --verbose 4

In this invocation, we have more control over the process. First the outlier filter merely
classifies outliers with a Classification value of 7. These outliers are then ignored
during SMRF processing with the ignore option. Finally, we add a range filter to extract
only the ground returns (i.e., Classification value of 2).

The result is a more accurate representation of the ground returns.

76 Chapter 9. Analysis

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.8 Generating a DTM

This exercise uses PDAL to generate an elevation model surface using the output from the
Identifying ground (page 71) exercise, PDAL’s writers.gdal
(https://pdal.io/stages/writers.gdal.html#writers-gdal) operation, and GDAL (http://gdal.org/)
to generate an elevation and hillshade surface from point cloud data.

9.8. Generating a DTM 77

https://pdal.io/stages/writers.gdal.html#writers-gdal
http://gdal.org/

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.8.1 Exercise

Note: The primary input for Digital Terrain Model
(https://en.wikipedia.org/wiki/Digital_elevation_model) generation is a point cloud with
ground classifications. We created this file, called denoised-ground-only.laz, in the
Identifying ground (page 71) exercise. Please produce that file by following that exercise
before starting this one.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

PDAL capability to generate rasterized output is provided by the writers.gdal
(https://pdal.io/stages/writers.gdal.html#writers-gdal) stage. There is no application
(https://pdal.io/apps/index.html#apps) to drive this stage, and we must use a pipeline.

Pipeline breakdown

{
"pipeline": [

"./exercises/analysis/ground/denoised-ground-only.laz",
{

"filename":"./exercises/analysis/dtm/dtm.tif",
"gdaldriver":"GTiff",
"output_type":"all",
"resolution":"2.0",
"type": "writers.gdal"

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/dtm/dtm.json file. Make sure to edit the filenames to match
your paths.

78 Chapter 9. Analysis

https://en.wikipedia.org/wiki/Digital_elevation_model
https://pdal.io/stages/writers.gdal.html#writers-gdal
https://pdal.io/apps/index.html#apps

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1. Reader

denoised-ground-only is the LASzip (http://laszip.org) file we will clip. You should
have created this output as part of the Identifying ground (page 71) exercise.

2. writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal)

The writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal) writer that bins the
point cloud data into an elevation surface.

Execution

1 pdal pipeline ./exercises/analysis/dtm/gdal.json

Visualization

Something happened, and some files were written, but we cannot really see what was
produced. Let us use qgis to visualize the output.

1. Open qgis and Add Raster Layer:

9.8. Generating a DTM 79

http://laszip.org
https://pdal.io/stages/writers.gdal.html#writers-gdal
../../../../_images/dtm-run-command.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

2. Add the dtm.tif file from your ./exercises/analysis/dtm directory.

80 Chapter 9. Analysis

../../../../_images/dtm-add-raster-layer.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.8. Generating a DTM 81

../../../../_images/dtm-add-raster-mean.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

3. Classify the DTM by right-clicking on the dtm.tif and choosing Properties. Pick the
pseudocolor rendering type, and then choose a color ramp and click Classify.

82 Chapter 9. Analysis

../../../../_images/dtm-qgis-added.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.8. Generating a DTM 83

../../../../_images/dtm-qgis-classify.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

4. qgis provides access to GDAL (http://gdal.org/) processing tools, and we are going to use
that to create a hillshade of our surface. Choose Raster–>Analysis–>Dem:

84 Chapter 9. Analysis

../../../../_images/dtm-qgis-colorize-dtm.png
http://gdal.org/

Point Cloud Processing and Analysis with PDAL, 08/26/2019

5. Click the window for the Output file and select a location to save the hillshade.tif
file.

9.8. Generating a DTM 85

../../../../_images/dtm-qgis-select-hillshade.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

86 Chapter 9. Analysis

../../../../_images/dtm-qgis-gdaldem.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1 gdaldem hillshade ./exercises/analysis/dtm/dtm.tif \
2 ./exercises/analysis/dtm/hillshade.tif \
3 -z 1.0 -s 1.0 -az 315.0 -alt 45.0 \
4 -of GTiff

1 gdaldem hillshade ./exercises/analysis/dtm/dtm.tif ^
2 ./exercises/analysis/dtm/hillshade.tif ^
3 -z 1.0 -s 1.0 -az 315.0 -alt 45.0 ^
4 -of GTiff

6. Click OK and the hillshade of your DTM is now available

9.8.2 Notes

1. gdaldem (http://www.gdal.org/gdaldem.html), which powers the qgis DEM tools, is a
very powerful command line utility you can use for processing data.

2. writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal) can be used for large
data, but it does not interpolate a typical TIN
(https://en.wikipedia.org/wiki/Triangulated_irregular_network) surface model.

9.8. Generating a DTM 87

../../../../_images/dtm-qgis-hillshade-done.png
http://www.gdal.org/gdaldem.html
https://pdal.io/stages/writers.gdal.html#writers-gdal
https://en.wikipedia.org/wiki/Triangulated_irregular_network

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.9 Creating surface meshes

This exercise uses PDAL to create surface meshes. PDAL is able to use a number of meshing
filters: https://pdal.io/stages/filters.html#mesh. Three of these are ‘in the box’, without needing
plugins compiled. These are 2D Delaunay triangulation, Greedy projection meshing and
Poisson surface meshing.

In this exercise we’ll create a Poisson surface mesh - a watertight isosurface - from our input
point cloud.

9.9.1 Exercise

We will create mesh models of a building and its surrounds using an entwine data input source.

After running each command, the output .ply file can be viewed in Meshlab or CloudCompare.

See also:

PDAL implements Mischa Kazhdan’s Poisson surface reconstruction algorithm. For details see
[Kazhdan2006]_

Note: writers.ply will write out mesh vertices by default. In this exercise we set the attribute
faces=”true”. Try using the ply writer without it. Also, if you’re using a machine with a lot of
processing power, try increasing the depth parameter for a more detailed mesh.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

1 pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com \
2 -o ./exercises/analysis/meshing/first-mesh.ply \
3 poisson --filters.poisson.depth=16 \
4 --readers.ept.bounds="([692738, 692967], [6092255,6092562])" \
5 --verbose 4

1 pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com ^
2 -o ./exercises/analysis/meshing/first-mesh.ply ^
3 poisson --filters.poisson.depth=16 ^
4 --readers.ept.bounds="([692738, 692967], [6092255,6092562])" ^
5 --verbose 4

88 Chapter 9. Analysis

https://pdal.io/stages/filters.html#mesh

Point Cloud Processing and Analysis with PDAL, 08/26/2019

You can view the mesh in Cloud Compare, you should see something similar to

Filtering

If we want to just mesh a building, or just terrain, or both we can apply a range filter based on
point classification. These data have ground labelled as class 2, and buildings as 6.

In this exercise we will create a poisson mesh surface of a building and the ground surrounding
it, using the same data subset as above and adding a filters.range

9.9. Creating surface meshes 89

../../../../_images/meshing.png
../../../../_images/first-mesh.png
https://pdal.io/stages/filters.range.html#filters-range

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(https://pdal.io/stages/filters.range.html#filters-range) stage to limit the set of points used in
mesh creation.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

1 pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com \
2 -o ./exercises/analysis/meshing/building-exercise.ply \
3 range poisson \
4 --filters.range.limits="Classification[2:2],Classification[6:6]" \
5 --filters.poisson.depth=16 \
6 --readers.ept.bounds="([692738, 692967], [6092255,6092562])" \
7 --verbose 4

1 pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com ^
2 -o ./exercises/analysis/meshing/building-exercise.ply ^
3 range poisson ^
4 --filters.range.limits="Classification[2:2],Classification[6:6]" ^
5 --filters.poisson.depth=16 ^
6 --readers.ept.bounds="([692738, 692967], [6092255,6092562])" ^
7 --verbose 4

9.10 Rasterizing Attributes

This exercise uses PDAL to generate a raster surface using a fully classified point cloud with
PDAL’s writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal).

90 Chapter 9. Analysis

../../../../_images/meshing-buildings.png
https://pdal.io/stages/writers.gdal.html#writers-gdal

Point Cloud Processing and Analysis with PDAL, 08/26/2019

9.10.1 Exercise

Note: The exercise fetches its data from a Entwine (https://entwine.io) service that organizes
the point cloud collection for the entire country of Denmark. You can view the data online at
http://potree.entwine.io/data/denmark.html

Command

PDAL capability to generate rasterized output is provided by the writers.gdal
(https://pdal.io/stages/writers.gdal.html#writers-gdal) stage. There is no application
(https://pdal.io/apps/index.html#apps) to drive this stage, and we must use a pipeline.

Pipeline breakdown

{
"pipeline":[

{
"type":"readers.ept",
"filename":"http://na-c.entwine.io/dk",
"bounds":"([1401016, 1410670], [7476527, 7484590])",
"resolution": 5

},
{
"type":"writers.gdal",
"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uint16_t",
"output_type":"mean",
"resolution": 5

}
]

}

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/dtm/dtm.json file. Make sure to edit the filenames to match
your paths.

9.10. Rasterizing Attributes 91

https://entwine.io
http://potree.entwine.io/data/denmark.html
https://pdal.io/stages/writers.gdal.html#writers-gdal
https://pdal.io/apps/index.html#apps

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1. Reader

{
"type":"readers.ept",
"filename":"http://na-c.entwine.io/dk",
"bounds":"([1401016, 1410670], [7476527, 7484590])",
"resolution": 5

},

The data is read from a EPT resource that contains the Denmark data. We’re going to
download a small patch of data by the Copenhagen airport area that is the limited to a spatial
resolution of 5m.

2. writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal)

The writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal) writer that bins the
point cloud data with classification values.

{
"type":"writers.gdal",
"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uint16_t",
"output_type":"mean",
"resolution": 5

}

Execution

Issue the pipeline (https://pdal.io/pipeline.html#pipeline) operation to execute the interpolation:

pdal pipeline ./exercises/analysis/rasterize/classification.json -v 3

{
"pipeline":[

{
"type":"readers.ept",
"filename":"http://na-c.entwine.io/dk",
"bounds":"([1401016, 1410670], [7476527, 7484590])",
"resolution": 5

},
{

"type":"writers.gdal",
(continues on next page)

92 Chapter 9. Analysis

https://pdal.io/stages/writers.gdal.html#writers-gdal
https://pdal.io/pipeline.html#pipeline

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uint16_t",
"output_type":"mean",
"resolution": 5

}
]

}

9.10. Rasterizing Attributes 93

../../../../_images/rasterization-classification-run-command.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Visualization

Basic interpolation of data with writers.gdal
(https://pdal.io/stages/writers.gdal.html#writers-gdal) will output raw classification values into
the resulting raster file. We will need to add a color ramp to the data for a satisfactory preview.

Unfortunately, this doesn’t give us a very satisfactory image to view. The reason is there is no
color ramp associated with the file, and we’re looking at pixel values with values from 0-31
according to the ASPRS LAS specification.

We want colors that correspond to the classification values a bit more directly. We can use a
color ramp to assign explicit values. qgis allows us to create a text file color ramp that gdaldem
can consume to apply colors to the data.

1 # QGIS Generated Color Map Export File
2 2 139 51 38 255 Ground
3 3 143 201 157 255 Low Veg
4 4 5 159 43 255 Med Veg
5 5 47 250 11 255 High Veg
6 6 209 151 25 255 Building
7 7 232 41 7 255 Low Point
8 8 197 0 204 255 reserved

(continues on next page)

94 Chapter 9. Analysis

../../../../_images/rasterization-denmark-no-ramp.png
https://pdal.io/stages/writers.gdal.html#writers-gdal

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

9 9 26 44 240 255 Water
10 10 165 160 173 255 Rail
11 11 81 87 81 255 Road
12 12 203 210 73 255 Reserved
13 13 209 228 214 255 Wire - Guard (Shield)
14 14 160 168 231 255 Wire - Conductor (Phase)
15 15 220 213 164 255 Transmission Tower
16 16 214 211 143 255 Wire-Structure Connector (Insulator)
17 17 151 98 203 255 Bridge Deck
18 18 236 49 74 255 High Noise
19 19 185 103 45 255 Reserved
20 21 58 55 9 255 255 Reserved
21 22 76 46 58 255 255 Reserved
22 23 20 76 38 255 255 Reserved
23 26 78 92 32 255 255 Reserved

With this ramp, you can load the color values into QGIS as a color ramp if you change the
layer to Palatted/Unique Values, and then load the color ramp file:

With the ramp, we can also use gdaldem (http://www.gdal.org/gdaldem.html) to apply it to a
new image:

9.10. Rasterizing Attributes 95

../../../../_images/rasterization-qgis-load-color-palette.png
http://www.gdal.org/gdaldem.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1 gdaldem color-relief denmark-classification.tif ramp.txt classified-
→˓color.png -of PNG

Intensity

With PDAL’s ability to override pipeline via commands, we can generate a relative intensity
image:

1 pdal pipeline ./exercises/analysis/rasterize/classification.json \
2 --writers.gdal.dimension="Intensity" \
3 --writers.gdal.data_type="float" \
4 --writers.gdal.filename="intensity.tif" \
5 -v 3
6

7 gdal_translate intensity.tif intensity.png -of PNG

1 pdal pipeline ./exercises/analysis/rasterize/classification.json ^
2 --writers.gdal.dimension="Intensity" ^
3 --writers.gdal.data_type="float" ^
4 --writers.gdal.filename="intensity.tif" ^

(continues on next page)

96 Chapter 9. Analysis

../../../../_images/rasterization-colored-classification.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

5 -v 3
6

7 gdal_translate intensity.tif intensity.png -of PNG

The same pipeline can be used to generate a preview image of the Intensity channel of the data
by overriding pipeline arguments at the command line.

9.10.2 Notes

1. writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal) can output any
dimension PDAL can provide, but it is is up to the user to interpolate the values. For
categorical data, neighborhood smoothing might produce undesirable results, for
example.

2. Pipeline (https://pdal.io/pipeline.html#pipeline) contains more information about
overrides and organizing complex pipelines.

9.10. Rasterizing Attributes 97

../../../../_images/rasterization-colored-intensity.png
https://pdal.io/stages/writers.gdal.html#writers-gdal
https://pdal.io/pipeline.html#pipeline

Point Cloud Processing and Analysis with PDAL, 08/26/2019

98 Chapter 9. Analysis

CHAPTER

TEN

PYTHON

10.1 Plotting a histogram

10.1.1 Exercise

PDAL doesn’t provide every possible analysis option, but it strives to make it convenient to
link PDAL to other places with substantial functionality. One of those is the Python/Numpy
universe, which is accessed through PDAL’s Python (https://pdal.io/python.html#python)
bindings and the filters.python (https://pdal.io/stages/filters.python.html#filters-python) filter.
These tools allow you to manipulate point cloud data with convenient Python tools rather than
constructing substantial C/C++ software to achieve simple tasks, compute simple statistics, or
investigate data quality issues.

This exercise uses PDAL to create a histogram plot of all of the dimensions of a file. matplotlib
(https://matplotlib.org/) is a Python package for plotting graphs and figures, and we can use it
in combination with the Python (https://pdal.io/python.html#python) bindings for PDAL to
create a nice histogram. These histograms can be useful diagnostics in an analysis pipeline. We
will combine a Python script to make a histogram plot with a pipeline
(https://pdal.io/apps/pipeline.html#pipeline-command).

Note: Python allows you to enhance and build functionality that you can use in the context of
other Pipeline (https://pdal.io/pipeline.html#pipeline) operations.

PDAL Pipeline

We’re going to create a PDAL Pipeline (https://pdal.io/pipeline.html#pipeline) to tell PDAL to
run our Python script in a filters.python
(https://pdal.io/stages/filters.python.html#filters-python) stage.

99

https://pdal.io/python.html#python
https://pdal.io/stages/filters.python.html#filters-python
https://matplotlib.org/
https://pdal.io/python.html#python
https://pdal.io/apps/pipeline.html#pipeline-command
https://pdal.io/pipeline.html#pipeline
https://pdal.io/pipeline.html#pipeline
https://pdal.io/stages/filters.python.html#filters-python

Point Cloud Processing and Analysis with PDAL, 08/26/2019

1 {
2 "pipeline": [
3 {
4 "filename": "./exercises/python/athletic-fields.laz"
5 },
6 {
7 "type": "filters.python",
8 "function": "make_plot",
9 "module": "anything",

10 "pdalargs": "{\"filename\":\"./exercises/python/
→˓histogram.png\"}",

11 "script": "./exercises/python/histogram.py"
12 },
13 {
14 "type": "writers.null"
15 }
16]
17 }

Note: This pipeline is available in your workshop materials in the
./exercises/python/histogram.json file.

Python script

The following Python script will do the actual work of creating the histogram plot with
matplotlib (https://matplotlib.org/). Store it as histogram.py next to the
histogram.json Pipeline (https://pdal.io/pipeline.html#pipeline) file above. The script is
mostly regular Python except for the ins and outs arguments to the function – those are
special arguments that PDAL expects to be a dictionary of Numpy dictionaries.

Note: This Python file is available in your workshop materials in the
./exercises/python/histogram.py file.

1 # import numpy
2 import numpy as np
3

4 # import matplotlib stuff and make sure to use the
5 # AGG renderer.
6 import matplotlib
7 matplotlib.use('Agg')
8 import matplotlib.pyplot as plt

(continues on next page)

100 Chapter 10. Python

https://matplotlib.org/
https://pdal.io/pipeline.html#pipeline

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

9 import matplotlib.mlab as mlab
10

11 # This only works for Python 3. Use
12 # StringIO for Python 2.
13 from io import BytesIO
14

15 # The make_plot function will do all of our work. The
16 # filters.programmable filter expects a function name in the
17 # module that has at least two arguments -- "ins" which
18 # are numpy arrays for each dimension, and the "outs" which
19 # the script can alter/set/adjust to have them updated for
20 # further processing.
21 def make_plot(ins, outs):
22

23 # figure position and row will increment
24 figure_position = 1
25 row = 1
26

27 fig = plt.figure(figure_position, figsize=(6, 8.5), dpi=300)
28

29 for key in ins:
30 dimension = ins[key]
31 ax = fig.add_subplot(len(ins.keys()), 1, row)
32

33 # histogram the current dimension with 30 bins
34 n, bins, patches = ax.hist(dimension, 30,
35 normed=0,
36 facecolor='grey',
37 alpha=0.75,
38 align='mid',
39 histtype='stepfilled',
40 linewidth=None)
41

42 # Set plot particulars
43 ax.set_ylabel(key, size=10, rotation='horizontal')
44 ax.get_xaxis().set_visible(False)
45 ax.set_yticklabels('')
46 ax.set_yticks((),)
47 ax.set_xlim(min(dimension), max(dimension))
48 ax.set_ylim(min(n), max(n))
49

50 # increment plot position
51 row = row + 1
52 figure_position = figure_position + 1
53

(continues on next page)

10.1. Plotting a histogram 101

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

54 # We will save the PNG bytes to a BytesIO instance
55 # and the nwrite that to a file.
56 output = BytesIO()
57 plt.savefig(output,format="PNG")
58

59 # a module global variable, called 'pdalargs' is available
60 # to filters.programmable and filters.predicate modules that

→˓contains
61 # a dictionary of arguments that can be explicitly passed into
62 # the module by the user. We passed in a filename arg in our

→˓`pdal pipeline` call
63 if 'filename' in pdalargs:
64 filename = pdalargs['filename']
65 else:
66 filename = 'histogram.png'
67

68 # open up the filename and write out the
69 # bytes of the PNG stored in the BytesIO instance
70 o = open(filename, 'wb')
71 o.write(output.getvalue())
72 o.close()
73

74

75 # filters.programmable scripts need to
76 # return True to tell the filter it was successful.
77 return True

Run pdal pipeline

1 pdal pipeline ./exercises/python/histogram.json

102 Chapter 10. Python

../../../_images/python-histogram-command.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Output

10.1. Plotting a histogram 103

../../../_images/python-histogram.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

10.1.2 Notes

1. writers.null (https://pdal.io/stages/writers.null.html#writers-null) simply swallows the
output of the pipeline. We don’t need to write any data.

2. The pdalargs JSON needs to be escaped because a valid Python dictionary entry isn’t
always valid JSON.

104 Chapter 10. Python

https://pdal.io/stages/writers.null.html#writers-null

CHAPTER

ELEVEN

GEOREFERENCING

11.1 Georeferencing

As discussed in the introduction (page 15), laser returns from a mobile LiDAR
(https://en.wikipedia.org/wiki/Lidar) system must be georeferenced, i.e. placed into a local or
global coordinate system by combining data from the laser and from a GNSS/IMU. As of this
writing, PDAL does not include generic georeferencing tools — this is considered future work.
However, the Optech (http://www.teledyneoptech.com/) csd file format includes both laser
return and GNSS/IMU data in the same file, and the PDAL csd reader includes built in
georeferencing support.

In this section, we will demonstrate how to georeference an Optech
(http://www.teledyneoptech.com/) csd file and reproject that file into a UTM projection.

Note: Optech’s (http://www.teledyneoptech.com/) csd format is just one of several
vendor-specific data formats PDAL supports; we also support data files directly from RIEGL
(http://riegl.com/) sensors and from several project-specific government platforms.

11.1.1 Exercise

The file S1C1_csd_004.csd contains airborne data from an Optech
(http://www.teledyneoptech.com/) sensor. Without georeferencing these points, they would be
impossible to interpret — once they are georeferenced, we will be able to inspect and analyze
these points like any other point cloud.

In addition to georeferencing, we are going to make two other tweaks to our point cloud:

• The point cloud is, by default, in WGS84
(https://en.wikipedia.org/wiki/Geodetic_datum), but we will reproject these points to a
UTM
(https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system)
coordinate system for visualization purposes.

105

https://en.wikipedia.org/wiki/Lidar
http://www.teledyneoptech.com/
http://www.teledyneoptech.com/
http://www.teledyneoptech.com/
http://riegl.com/
http://www.teledyneoptech.com/
https://en.wikipedia.org/wiki/Geodetic_datum
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

Point Cloud Processing and Analysis with PDAL, 08/26/2019

• Because these are raw data coming from the sensor, these data are noisy. In particular,
there are a few points very close to the sensor which were probably caused by air returns
or laser light reflecting off of part of the airplane or sensor. These points have very high
intensity values, which will screw up our visualization. We will use the filters.range
(https://pdal.io/stages/filters.range.html#filters-range) PDAL filter to drop all points with
very high intensity values.

Note: These data were provided by Dr. Craig Glennie and were collected by NCALM
(http://ncalm.cive.uh.edu/), the National Center for Airborne Laser Mapping. The collect area
is southwest of Austin, TX.

Command

Invoke the following command, substituting accordingly, into your ‘ Conda Shell‘:

pdal translate \
./exercises/georeferencing/S1C1_csd_004.csd \
./exercises/georeferencing/S1C1_csd_004.laz \
reprojection range \
--filters.reprojection.out_srs="EPSG:32614" \
--filters.range.limits="Intensity[0:500]"

pdal translate ^
./exercises/georeferencing/S1C1_csd_004.csd ^
./exercises/georeferencing/S1C1_csd_004.laz ^
reprojection range ^
--filters.reprojection.out_srs="EPSG:32614" ^
--filters.range.limits="Intensity[0:500]"

Visualization

View your georeferenced point cloud in http://plas.io.

106 Chapter 11. Georeferencing

https://pdal.io/stages/filters.range.html#filters-range
http://ncalm.cive.uh.edu/
../../../_images/georeferencing-run-command.png
http://plas.io

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Fig. 1: Our airborne laser point cloud after georeferencing, reprojection, and intensity filtering.

11.1. Georeferencing 107

../../../_images/georeference-plasio.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

108 Chapter 11. Georeferencing

CHAPTER

TWELVE

BATCH PROCESSING

12.1 Batch Processing

PDAL doesn’t handle matching multiple file inputs except for glob handling for merge
operations, but does allow for command line substitution parameters to make batch processing
simpler, substitutions. Substitions work with both Pipeline
(https://pdal.io/pipeline.html#pipeline) operations as well as with other applications such as
translate (https://pdal.io/apps/translate.html#translate-command).

12.1.1 Operating system variations

How substitutions are passed generally depends on the operating system and tools available. In
the unix/linux environments, this is primarily using the find and ls programs to get lists of files
(either with directories or just filenames) and the xargs or parallel program to pass those files
to the pdal application (although -exec with find can also be used). These tools are available
in the docker environment if you are running PDAL under docker. They are also available
under Windows one installs Cygwin or MinGW. They are also available if Git for Windows is
installed. They are also available as win32 command line programs installed from the GNU
Findutils (https://www.gnu.org/software/findutils/findutils.html). They are available for
MacOS and Linux.

12.1.2 Windows native tools

Subtitions can be handled directly in windows using PowerShell syntax.

While there are a number of ways to generate lists of files, the Get-ChildItem is used here,
along with the foreach option to pass each separate filepath to the pdal application.

109

https://pdal.io/pipeline.html#pipeline
https://pdal.io/apps/translate.html#translate-command
https://www.gnu.org/software/findutils/findutils.html

Point Cloud Processing and Analysis with PDAL, 08/26/2019

12.1.3 Example - Batch compression of LAS files to LAZ - Power-
Shell:

To compress a series of LAS files in one directory into compressed LAZ files in another
directory, the PowerShell syntax would be:

Get-ChildItem .\DIR1*.las | foreach {pdal translate -i .\DIR1\$($_.
→˓BaseName).las ^
-o .\DIR2\$($_.BaseName).laz}

Note the use of the $($_.BaseName) syntax for the files passed. This option on the $($_)
shortcut for the full filename, removes the directory and the extension on the file and allows the
user to set the path and extension manually.

12.1.4 Example - Parallel Batch compression of LAS files to LAZ -
PowerShell:

This use of the PowerShell syntax doesn’t allow a user to execute more than one process at a
time. There is a free download of the xargs program that provides parallel execution available
at http://www.pirosa.co.uk/demo/wxargs/ppx2.exe. For this tool, the file names are passed with
using the {} syntax.

Get-ChildItem .\dir1\ | Select-Object -ExpandProperty BaseName ^
| .\ppx2.exe -P 3 pdal translate -i ".\dir1\{}.las" -o ".\dir2\{}.laz
→˓"

12.1.5 Example - Batch compression of LAS files to LAZ - Bash:

To compress a series of LAS files in one directory into compressed LAZ files in another
directory, the Bash syntax would be:

ls ./dir1/*.las | parallel -I{} \
pdal translate -i ./dir1/{/.}.las -o ./dir2/{/.}.laz

In Parallel, then {/.} syntax means strip the directory and the extension and just use the
basename of the file. This allows you to easily change the output format and the location.

12.1.6 Example - Parallel Batch compression of LAS files to LAZ -
Bash:

Parallel, as its name implies, allows paralell operations. Adding the -j syntax indicates the
number simultaneous jobs to run

110 Chapter 12. Batch Processing

http://www.pirosa.co.uk/demo/wxargs/ppx2.exe

Point Cloud Processing and Analysis with PDAL, 08/26/2019

ls ./dir1/*.las | parallel -I{} -j 4 \
pdal translate -i ./dir1/{/.}.las -o ./dir2/{/.}.laz

12.1.7 Exercise - Pipeline Substitions:

For the most flexibility, pipelines are used to apply a series of opertations to a file (or group of
files). In this excersise, we build on the Generating a DTM (page 77) pipeline example, but run
this pipline over 4 files and reproject, calculate a bare earth using the filters.smrf
(https://pdal.io/stages/filters.smrf.html#filters-smrf) filter, remove those points that aren’t bare
earth with filters.range (https://pdal.io/stages/filters.range.html#filters-range) and then write the
output using the writers.gdal (https://pdal.io/stages/writers.gdal.html#writers-gdal).

The pipeline we are using is:

{
"pipeline": [

{
"type":"readers.las"

},
{

"type": "filters.reprojection"
},
{

"type": "filters.smrf"
},
{

"type":"filters.range",
"limits":"Classification[2:2]"

},
{

"gdaldriver":"GTiff",
"output_type":"idw",
"resolution" :"2.0",
"type": "writers.gdal"

}
]

}

You might have spotted that this pipeline doesn’t have any input or output file references, or a
value for the output spatial reference. We will be adding those at the command line, not within
the actual pipeline and using the substitutions syntax to do this.

PS ./exercises/batch> Get-ChildItem ./exercises/batch/
→˓source/*.laz | ^
foreach {pdal pipeline ./exercises/batch/batch_srs_gdal.
→˓json ^ (continues on next page)

12.1. Batch Processing 111

https://pdal.io/stages/filters.smrf.html#filters-smrf
https://pdal.io/stages/filters.range.html#filters-range
https://pdal.io/stages/writers.gdal.html#writers-gdal

Point Cloud Processing and Analysis with PDAL, 08/26/2019

(continued from previous page)

--readers.las.filename=./source/$($_.BaseName).laz ^
--writers.gdal.filename=./dtm/$($_.BaseName).tif ^
--filters.reprojection.in_srs=epsg:3794 ^
--filters.reprojection.in_srs=epsg:32733}

ls ./exercises/batch_processing/source/*.laz | \
parallel -I{} pdal pipeline ./exercises/batch_processing/
→˓batch_srs_gdal.json \
--readers.las.filename={} \
--writers.gdal.filename=./exercises/batch_processing/dtm{/.
→˓}.tif \
--filters.reprojection.in_srs=epsg:3794 \
--filters.reprojection.out_srs=epsg:32733

Once you have your dtms created with pdal, combine them to a single file with:

gdalbuildvrt ./exercises/batch_processing/dtm.vrt ./exercises/batch_
→˓processing/dtm*.tif

You can then visualize the vrt with qgis. Add the vrt twice, and set the properties of the lower
layer to hillshade. Set the upper layer to Singleband PseudoColor and choose a pleasing color
ramp. Then set the transparency of the upper layer to 50% and you’ll get a nice display of the
terrain.

112 Chapter 12. Batch Processing

Point Cloud Processing and Analysis with PDAL, 08/26/2019

12.1. Batch Processing 113

../../../_images/batch-processing-dtm-qgis.png

Point Cloud Processing and Analysis with PDAL, 08/26/2019

114 Chapter 12. Batch Processing

Part V

Final Project

115

Point Cloud Processing and Analysis with PDAL, 08/26/2019

The final project brings together a number of PDAL processing workflow operations into a
single effort It builds upon the exercises to enable you to use the capabilities of PDAL in a
coherent processing strategy, and it will give you ideas about how to orchestrate PDAL in the
context of larger data processing scenarios.

Given the following pipeline for fetching the data, complete the rest of the tasks:

{
"pipeline": [

{
"type": "readers.ept",
"filename":"http://na-c.entwine.io/dublin/",
"bounds":"([-697041.0, -696241.0], [7045398.0, 7046086.

→˓0],[-40, 400])"

},
{

"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "0",
"filename":"st-stephens.laz"

}
]

}

• Read data from an EPT resource using readers.ept
(https://pdal.io/stages/readers.ept.html#readers-ept) (See Entwine (page 39))

• Thin it by 1.0 meter spacing using filters.sample
(https://pdal.io/stages/filters.sample.html#filters-sample) (See Thinning (page 65))

• Filter out noise using filters.outlier
(https://pdal.io/stages/filters.outlier.html#filters-outlier) (See Removing noise (page 57))

• Classify ground points using filters.smrf
(https://pdal.io/stages/filters.smrf.html#filters-smrf) (See Identifying ground (page 71))

• Compute height above ground using filters.hag
(https://pdal.io/stages/filters.hag.html#filters-hag)

• Generate a digital terrain model (DTM) using writers.gdal
(https://pdal.io/stages/writers.gdal.html#writers-gdal) (See Generating a DTM (page 77))

• Generate a average vegetative height model using writers.gdal
(https://pdal.io/stages/writers.gdal.html#writers-gdal)

Note: You should review specific Exercises (page 29) for specifics how to achieve each task.

117

https://pdal.io/stages/readers.ept.html#readers-ept
https://pdal.io/stages/filters.sample.html#filters-sample
https://pdal.io/stages/filters.outlier.html#filters-outlier
https://pdal.io/stages/filters.smrf.html#filters-smrf
https://pdal.io/stages/filters.hag.html#filters-hag
https://pdal.io/stages/writers.gdal.html#writers-gdal
https://pdal.io/stages/writers.gdal.html#writers-gdal

Point Cloud Processing and Analysis with PDAL, 08/26/2019

118

Part VI

Notes

119

CHAPTER

THIRTEEN

NOTES

121

Point Cloud Processing and Analysis with PDAL, 08/26/2019

122 Chapter 13. Notes

CHAPTER

FOURTEEN

NOTES

123

Point Cloud Processing and Analysis with PDAL, 08/26/2019

124 Chapter 14. Notes

CHAPTER

FIFTEEN

NOTES

125

Point Cloud Processing and Analysis with PDAL, 08/26/2019

126 Chapter 15. Notes

CHAPTER

SIXTEEN

NOTES

127

Point Cloud Processing and Analysis with PDAL, 08/26/2019

128 Chapter 16. Notes

CHAPTER

SEVENTEEN

NOTES

129

Point Cloud Processing and Analysis with PDAL, 08/26/2019

130 Chapter 17. Notes

CHAPTER

EIGHTEEN

NOTES

131

Point Cloud Processing and Analysis with PDAL, 08/26/2019

132 Chapter 18. Notes

BIBLIOGRAPHY

[Gle07] Craig L. Glennie. Rigorous 3D error analysis of kinematic scanning LIDAR systems.
Journal of Applied Geodesy, jan 2007.

133

Point Cloud Processing and Analysis with PDAL, 08/26/2019

134 Bibliography

INDEX

B
boundary, 43

C
capstone, 117
classification, 71, 88, 90
classifications, 58
Clipping, 47
Colorization, 53
Conda, 25
coordinate system, 30
csd, 105
CSV, 30

D
Denoising, 57
Density, 60
density, 65
DSM, 77
DTM, 77

E
elevation model, 77
EPT, 40

F
filtering, 71, 88

G
GDAL, 53
georeferencing, 15, 105
GNSS/IMU, 15, 105
ground, 71, 88

H
hexagon tessellation, 60

histogram, 104

I
info command, 29
installation, 29
intensity, 90

J
JSON, 30

M
matplotlib, 104
metadata, 30

N
nearby, 33
nearest, 33
Numpy, 104

O
OGR, 43, 47, 60
Optech, 105
outliers, 57

P
poisson, 65
Potree, 40
project, 117
Python, 104

Q
QGIS, 43
query, 33

R
range filter, 58

135

Point Cloud Processing and Analysis with PDAL, 08/26/2019

Raster, 53
rasterization, 90
Reprojection, 36
RGB, 53
RIEGL, 105

S
sample, 65
search, 33
SOCS, 15
software installation, 25
spatial reference system, 30
Start Here, 29

T
thinning, 65

U
UTM, 36, 105

V
Vector, 47
voxel sampling, 65

W
web services, 40
WGS84, 36, 105

136 Index

	I Introduction
	Materials
	Slides
	Workshop Materials
	USB Example Data Drive

	II Introduction to LiDAR
	Types of LiDAR
	Modes of LiDAR Collection
	Georeferencing
	Integrating LiDAR and GNSS/IMU data

	Discrete-Return vs. Full-Waveform

	III Software Installation
	Conda
	What is Conda
	How will we use Conda?
	Installing Conda

	IV Exercises
	Basic Information
	Printing the first point
	Printing file metadata
	Searching near a point

	Translation
	Compression
	Reprojection
	Entwine

	Analysis
	Finding the boundary
	Clipping data with polygons
	Colorizing points with imagery
	Removing noise
	Visualizing acquisition density
	Thinning
	Identifying ground
	Generating a DTM
	Creating surface meshes
	Rasterizing Attributes

	Python
	Plotting a histogram

	Georeferencing
	Georeferencing

	Batch Processing
	Batch Processing

	V Final Project
	VI Notes
	Notes
	Notes
	Notes
	Notes
	Notes
	Notes
	Bibliography
	Index

